925 research outputs found

    Identification and correction of previously unreported spatial phenomena using raw Illumina BeadArray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key stage for all microarray analyses is the extraction of feature-intensities from an image. If this step goes wrong, then subsequent preprocessing and processing stages will stand little chance of rectifying the matter. Illumina employ random construction of their BeadArrays, making feature-intensity extraction even more important for the Illumina platform than for other technologies. In this paper we show that using raw Illumina data it is possible to identify, control, and perhaps correct for a range of spatial-related phenomena that affect feature-intensity extraction.</p> <p>Results</p> <p>We note that feature intensities can be unnaturally high when in the proximity of a number of phenomena relating either to the images themselves or to the layout of the beads on an array. Additionally we note that beads neighbour beads of the same type more often than one might expect, which may cause concern in some models of hybridization. We highlight issues in the identification of a bead's location, and in particular how this both affects and is affected by its intensity. Finally we show that beads can be wrongly identified in the image on either a local or array-wide scale, with obvious implications for data quality.</p> <p>Conclusions</p> <p>The image processing issues identified will often pass unnoticed by an analysis of the standard data returned from an experiment. We detail some simple diagnostics that can be implemented to identify problems of this nature, and outline approaches to correcting for such problems. These approaches require access to the raw data from the arrays, not just the summarized data usually returned, making the acquisition of such raw data highly desirable.</p

    BeadArray Expression Analysis Using Bioconductor

    Get PDF
    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered

    Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer.

    Get PDF
    Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker and to assess its utility in predicting response to adjuvant zoledronic acid. We used quantitative proteomics (SILAC-MS), to compare protein expression in a bone-homed variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast cancer. SILAC-MS showed that Dedicator of cytokinesis protein 4 (DOCK4) was upregulated in bone-homing BM1 cells, confirmed by Western blotting. BM1 cells also had enhanced invasive ability compared with parental cells which could be reduced by DOCK4-shRNA. In a training Tissue Microarray (TMA) comprising 345 patients with early breast cancer, immunohistochemistry followed by Cox regression revealed that high DOCK4 expression correlated with histological grade (p=0.004) but not oestrogen receptor status (p=0.19) or lymph node involvement (p=0.15). A clinical validation TMA used tissue samples and the clinical database from the large AZURE adjuvant study (n=689). Adjusted Cox regression analyses showed that high DOCK4 expression in the control arm (no zoledronic acid) was significantly prognostic for first recurrence in bone (HR 2.13, 95%CI 1.06-4.30, p=0.034). No corresponding association was found in patients who received zoledronic acid (HR 0.812, 95%CI 0.176-3.76, p=0.790), suggesting that treatment with zoledronic acid may counteract the higher risk for bone relapse from high DOCK4-expressing tumours. High DOCK4 expression was not associated with metastasis to non-skeletal sites when these were assessed collectively. In conclusion, high DOCK4 in early breast cancer is significantly associated with aggressive disease and with future bone metastasis and is a potentially useful biomarker for subsequent bone metastasis risk

    SAMQA: error classification and validation of high-throughput sequenced read data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advances in high-throughput sequencing technologies and growth in data sizes has highlighted the need for scalable tools to perform quality assurance testing. These tests are necessary to ensure that data is of a minimum necessary standard for use in downstream analysis. In this paper we present the SAMQA tool to rapidly and robustly identify errors in population-scale sequence data.</p> <p>Results</p> <p>SAMQA has been used on samples from three separate sets of cancer genome data from The Cancer Genome Atlas (TCGA) project. Using technical standards provided by the SAM specification and biological standards defined by researchers, we have classified errors in these sequence data sets relative to individual reads within a sample. Due to an observed linearithmic speedup through the use of a high-performance computing (HPC) framework for the majority of tasks, poor quality data was identified prior to secondary analysis in significantly less time on the HPC framework than the same data run using alternative parallelization strategies on a single server.</p> <p>Conclusions</p> <p>The SAMQA toolset validates a minimum set of data quality standards across whole-genome and exome sequences. It is tuned to run on a high-performance computational framework, enabling QA across hundreds gigabytes of samples regardless of coverage or sample type.</p

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer
    • …
    corecore